

Satellite Mapping of Agricultural Water Requirements in California

Forrest Melton, Sr. Research Scientist forrest.s.melton@nasa.gov

L. Johnson, C. Lund, A. Guzman, K. Post, S. Hiatt, C. Rosevelt, G. Miller, A. Michaelis, P. Votava, R. Nemani CSU Monterey Bay / NASA ARC-CREST

Kent Frame, Bekele Temesgen, Morteza Orang, Cayle Little
CA Dept. of Water Resources

Partners:

CA Dept. of Water Resources, Western Growers Association, Center for Irrigation Technology / CSU Fresno, USDA ARS / NRCS, Univ. of California Cooperative Extension, USGS, Booth Ranches, Chiquita, Constellation Brands, Del Monte Produce, E & J. Gallo, Farming D, Fresh Express, Pereira Farms, Ryan Palm Farms, Tanimura & Antle

NASA

- \$43.5B in cash farm receipts in 2012 from 81,500 farms
- Major domestic/international supplier of specialty crops
- Half of US-grown fruits, nuts, vegetables
- Diversity of crops

Water Resource Management Challenges

- Drought impacts
 - ~20% of full allocation from CVP in 2013 for SJV farmers
 - 0% allocation for 2014
- Competing demands
- Aging water conveyance infrastructure
- Groundwater overdraft
- Water quality and impaired water bodies
 - Nitrate, salinity, selenium

Water, Yield and Total Benefits to Farmers from CIMIS				
Crop	Water \$US +	Yield ⁺⁺ \$US	Total \$US	Benefit/Hectare \$US
Trees and Vines Sample				
Almonds	246,000	2,426,500	2,672,500	408
Apples	900	13,900	14,800	366
Avocados	-141,350*	738,000	596,500	760
Grapes	100,850	1,336,500	1,437,3500	730
Pistachios	370,150	6,755,000	7,125,000	630
Plums	556	12,445	13,000	402
Vegetable Sample				
Artichoke	2,500	326,200	328,700	160
Broccoli	2,750	106,100	108,850	730
Cauliflower	5,750	334,100	339,850	870
Celery	3,350	345,750	349,100	1700
Lettuce	26,000	1,361,000	1,387,000	920
Field Crop Sample				
Alfalfa	47,790	325,700	373,500	100
Cotton	345,300	810,500	1,155,800	110

Source: http://www.cimis.water.ca.gov/cimis/resourceArticleOthersTechRole.jsp

Average reduction in total applied water: 13% Average increase in yields: 8%

^{*}Money saved due to reduced water bill resulting from using CIMIS.

⁺⁺Increased income from increased yield resulting from using CIMIS.

^{*}Negative number indicates increased water use with CIMIS.

Opportunity

Standard approach for incorporating information on weather / crop stage into irrigation management practices:

California Irrigation Management Information System (CIMIS)

- Operated by CA DWR since 1982
- >140 stations currently providing daily measurements of ET₀
- Spatial CIMIS data now available for CA; 2km statewide grid, daily
- Crop coefficient mapping identified by CA DWR as high priority need for CIMIS

Photo credit: DWR CIMIS

Spatial CIMIS ET₀

Satellite Irrigation Management Support (SIMS): Objectives

- Develop near real-time estimates of crop water requirements from satellite data to assist growers in optimizing irrigation, and water managers in improving estimates of agricultural water requirements
- 2) Provide web and mobile data interfaces to increase the ability of the agricultural community to access and use satellite data in irrigation management and crop monitoring

Landsat (TM / ETM+ / OLI) 30m / 0.25 acres Overpass every 8-16 days

Terra / Aqua (MODIS) 250m / 15.5 acre Daily overpass

Normalized Difference Vegetation Index

Credit: ODIS

Commonly used remote sensing index of vegetation condition

Approach: Mapping Crop Coefficients and Indicators of Crop Water Requirements from Satellite Data

USDA studies provide basis for linking satellite vegetation indices (NDVI) to fractional cover.

Trout et al., 2008; Johnson & Trout, 2011

Recent studies by Allen & Pereira (2009) and others provide basis for linking fractional cover to Kcb for a range of crops.

Also see Bryla et al., 2010; Grattan et al., 1998; Hanson & May, 2006; Lopez-Urrea et al., 2009

Site info.

CIMIS

Satellite Irrigation Management Support (SIMS) Framework

Satellite

(Landsat & MODIS)

- Integration of satellite and surface measurements
- 2. Prototyping accelerated by NASA high end computing resources
- 3. Integration with irrigation management tools (CropManage, VSIM)
- 4. Freely available data
- 5. Outreach and education through partnerships with Western Growers and agricultural extension services

Satellite Irrigation Management Support (SIMS) Framework

Satellite Irrigation Management Support (SIMS) Framework

Delivering Data to the Field: Mobile Interfaces

Mobile-based interfaces important for enhancing access to data

NASA

Verification and Validation: Sensor Networks

Sensor Network Installations

Crop Type	Crop	Location
Grain	Corn*	CSU Fresno
Grain	Wheat	San Joaquin Valley
Row	Garlic	San Joaquin Valley
Row	Lettuce*	SJ & Salinas Valley
Row	Broccoli*	Salinas Valley
Row	Cauliflower	San Joaquin Valley
Row	Tomato(2)*	San Joaquin Valley
Row	Cotton (drip)*	San Joaquin Valley
Vine	Melon	San Joaquin Valley
Vine	Wine grapes*	Salinas Valley
Vine	Raisins*	San Joaquin Valley
Tree	Peach*	San Joaquin Valley
Tree	Almond*	San Joaquin Valley
Tree	Orange*	San Joaquin Valley

Google Earth Pro File Edit View Tools Add Help San Francisco Google Campus, US San Jose Tomato **Broccoli Oranges** Almonds Wine grape Watermelon California Raisin grape Wheat Peach Processing tomatoes © 2011 Google Data SIO, NOAA, U.S. Navy, NGA, GEBCO

^{*}Surface renewal instrumentation.

Verification and Validation: Results

Comparison of seasonal ET totals from SIMS and the sensor network for sites instrumented in 2011 and 2012, excluding intentionally stressed crops (wine grapes, raisins, and cotton).

Verification and Validation: Results

Comparison of seasonal ET totals from SIMS and the sensor network for sites instrumented in 2011 and 2012. Ke and Ks coefficient via a soil water balance model based on FAO-56 (Allen et al., 1998).

Yield Trials

Lettuce & Broccoli USDA ARS, Spence Road, Salinas

Treatments:

Standard practice

SIMS

CropManage

- 3 tmts, 5 reps, block randomized design
- Total area: ~1.4ac (0.57 ha)
- Two years of data: 2012 & 2013

PI: Lee Johnson; Co-I: Michael Cahn Collaboration with UCCE, USDA ARS, Fresh Express, Tanimura & Antle

Yield Trials: Results to Date

 Results to date confirm savings in applied water of 22-33% without reductions in yield or quality

- Standard practice
- SIMS
- CropManage

Examples of Efficient On-Farm Water Use

Irrigation vs Evapotranspiration, 2013 Pinot Noir, Galt, CA

Examples of Efficient On-Farm Water Use

Irrigation vs Evapotranspiration, 2013 Peaches, Kingsburg, CA

Thank you

forrest.s.melton@nasa.gov